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Abstract— Multi-contrast magnetic resonance (MR) im-
age registration is useful in the clinic to achieve fast and
accurate imaging-based disease diagnosis and treatment
planning. Nevertheless, the efficiency and performance of
the existing registration algorithms can still be improved.
In this paper, we propose a novel unsupervised learning-
based framework to achieve accurate and efficient multi-
contrast MR image registrations. Specifically, an end-to-
end coarse-to-fine network architecture consisting of affine
and deformable transformations is designed to improve
the robustness and achieve end-to-end registration. Fur-
thermore, a dual consistency constraint and a new prior
knowledge-based loss function are developed to enhance
the registration performances. The proposed method has
been evaluated on a clinical dataset containing 555 cases,
and encouraging performances have been achieved. Com-
pared to the commonly utilized registration methods, in-
cluding VoxelMorph, SyN, and LT-Net, the proposed method
achieves better registration performance with a Dice score
of 0.8397±0.0756 in identifying stroke lesions. With regards
to the registration speed, our method is about 10 times
faster than the most competitive method of SyN (Affine)
when testing on a CPU. Moreover, we prove that our method
can still perform well on more challenging tasks with lack-
ing scanning information data, showing the high robust-
ness for the clinical application.

Index Terms— medical image analysis, multi-contrast,
registration, unsupervised deep learning
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I. INTRODUCTION

Multi-modal medical imaging plays an important role in
many clinical applications [1]–[13]. Among them, multi-
contrast magnetic resonance (MR) imaging is one of the most
prevalent techniques as different MR imaging sequences can
provide versatile information and highlight different regions
of interest of the patient. For instance, diffusion-weighted
imaging (DWI) and apparent diffusion coefficient (ADC) are
functional MR images based on the movement of water
molecules [14], [15]. T1-weighted images (T1), T2-weighted
images (T2), and fluid-attenuated inversion-recovery (FLAIR)
are structural MR images [16] which can indicate different
characteristics of anatomical structures.

Multi-contrast MR imaging is of great significance for
disease diagnosis and treatment response monitoring in clin-
ical practices [17]–[20]. Structural MR images can clearly
show the structures and boundaries of brain tissues but have
moderate performances on discriminating brain lesions. On
the other hand, functional MR images possess excellent ca-
pabilities of highlighting brain diseases, such as ischemic
lesion regions. Analysis with multi-contrast images contributes
to the comprehensive understanding of the patient. However,
misalignment exists between different contrast images due to
various issues of the scanning process, including physiological
activities and eddy currents [21]. Fig. 1 shows the multi-
contrast images of four examples. Physical space alignment
has been conducted utilizing the provided scanning informa-
tion. However, misalignment between the different contrast
images can still be observed. In some cases, the scanning
information might be lost due to data storage or transfer, large
misalignment can happen. Misalignment brings difficulties to
identify lesions accurately, which may have adverse effects
on disease diagnosis. Multi-contrast MR image registration is
needed.

Registration methods are available to alleviate the mismatch
problem. Traditional multi-contrast registration algorithms rely
on the interactive optimization process, which is not very
applicable to the time-sensitive diagnosis required in clinical
practices. Deep learning-based methods have been developed
recently and can speed up the registration process at the cost

Authorized licensed use limited to: University of Canberra. Downloaded on May 21,2021 at 10:39:39 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3059282, IEEE
Transactions on Medical Imaging

2 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

Fig. 1. MR multi-contrast brain images acquired from four candidates.
There are differences between the contrasts that need to be registered.

of registration accuracy.
To achieve accurate and fast multi-contrast MR image

registration, this paper proposes a novel concise registration
framework. Specifically, we have made the following contri-
butions:

1) We propose an unsupervised coarse-to-fine registration
framework. A coarse registration is obtained by an
affine transformation network, which is then refined
by a subsequent deformable transformation network.
These two transformations are integrated, and end-to-
end image registration is achieved.

2) A dual consistency constraint is designed to maximize
the cross-correlation of topology maps of multi-contrast
MR images. The inverse deformation field is generated
from the forward deformation field directly to reduce the
time requirement. The designed consistency constraint
is enforced on the bi-directional deformations so as to
suppress pixel folding.

3) A prior knowledge-based loss function is designed to
improve the sensitivity of mutual information (MI) for
more accurate registration. Specifically, a negative area
constraint is designed to limit signals that are registered
in the fixed images background.

4) Extensive experiments with or without the first step
of physical space alignment show the superiority of
the proposed registration method compared to existing
widely-employed approaches.

The rest of this paper is organized as follows: Section
II introduces related work in medical image registration,
Section III describes our methods, Section IV presents the
experimental results and relevant analysis, and Section V gives
the conclusion.

II. RELATED WORK

A. Conventional image registration methods

Traditional image registration algorithms, such as elastic
[22], [23], fluid [24]–[28] or B-spline models [29], are usually
based on the iterative numerical solution of the optimization
problem. Especially, in 1998, Thirion et al. [30] proposed a
method called demons to estimate the velocity vector field
between two adjacent images in a video. Specifically, they
calculated the optical flow, used Gaussian filter to smooth
the flow map, and optimized the predictions on each pair
of images through multiple iterations. Since the successful
implementation of demons, many variants were developed,
such as the works by Wang et al. and Vercauteren et al.
[31], [32]. In 2005, Beg et al. [24] proposed another fa-
mous registration algorithm, LDDMM (Large Displacement
Diffeo-morphic Metric Mapping), by deducing and imple-
menting the Euler-Lagrangian optimization to compute particle
flows, solving a global variational problem, and estimating
metrics for images. Subsequently, variants of this algorithm
were also proposed, including Region-specific Diffeomorphic
Metric Mapping (RDMM), vector momentum-parameterized
Stationary Velocity Field (vSVF), and Symmetric image Nor-
malization (SyN) [33]–[35]. Among them, SyN [35] has
been the most widely employed algorithm in medical image
registration.It described an Euler-Lagrange optimization based
symmetric image normalization method for maximizing the
cross-correlation. Nevertheless, the efficiency of these methods
can still be improved since these methods are based on iterative
optimization [4], [36].

B. Deep learning-based unimodal image registration

With the fast development in the deep learning field, some
deep learning-based image registration models have been
proposed. Initially, deep learning was employed to enhance
the registration performance of the iterative methods. Then,
deep reinforcement learning was introduced to predict steps of
transformations until the optimal alignment was reached [37]–
[40]. With the increased demand on the registration speed,
deep learning-based registration methods were proposed [2],
[41]–[43]. One representative work in this group is STN (Spa-
tial Transform Network), which generates dense deformable
transformations to register images. Since then, STN has been
modified and utilized in various situations [44]. Yoo et al. [45]
successfully employed STN to register electron microscopy
images. They trained an autoencoder to reconstruct the fixed
images and calculated a new loss between the reconstructed
fixed images and the corresponding moving images. Krebs
et al. [36], [46] proposed a random latent space learning
method to alleviate the requirement on spatial regularization.
De Vos et al. [41] developed a multi-stage and multi-scale
approach to register unimodal images with a normalized cross
correlation (NCC) loss and a bending energy regularization.
However, this approach cascaded multiple networks, which
severely increased the computational complexity. Balakrishnan
et al. proposed the famous framework, VoxelMorph, and its
derivative versions [2]–[5], which computed gradients of the
transformation to backpropagate deformation errors during
optimization. However, since the above methods all focus on
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unimodal image registration, multi-contrast image registration
remains to be explored.

C. Deep learning-based multi-modal image registration

Since multi-contrast MR image registration is similar to
multi-modal medical image registration, we discuss multi-
modal registration in this section to give a more compre-
hensive description. Compared with unimodal registration,
multi-modal registration is more challenging because it is
difficult to define effective similarity measures to guide local
matching across different modalities. Mutual information (MI)
is the most frequently utilized supervision in existing studies
[47]. Li et al. [48] registered multi-modal retinal images by
using the descriptor matching on the average phase map for
global registration and using a deformable modality inde-
pendent neighborhood descriptor method to locally optimize
the registration results. Unfortunately, this method was based
on manually designed features and it has limited robustness.
Ceranka et al. [49] proposed a whole-body DWI and T1-
weighted image registration method. This method roughly
aligned the pelvis regions of the two modal images and
then used MI to guide global registration. Cao et al. [50]
developed an image synthesis-based method. They adopted a
random forest to learn the transformation between computed
tomography (CT) images and MR images, and synthesized
pseudo CT images and pseudo MR images with similar
anatomical structures. In this way, they transferred the multi-
modal image registration task to a unimodal image registration
task. Improved models over this original implementation were
also proposed in [51]. Nonetheless, these methods require a
robust domain transformation algorithm and their registration
performances can be highly affected by the quality of the
synthesized images [50].

III. METHOD

In this paper, we propose a concise registration algorithm
for unsupervised multi-contrast MR image registration. The
proposed method embeds an affine transformation network in
a deformable network to achieve coarse-to-fine registrations.
A dual consistency constraint is designed to further enhance
the registration performance. Meanwhile, a prior knowledge-
based guidance function is implemented. Here, let K ∈ R
represents the sample count in the multi-contrast datasets and
F ⊃

{
f1, f2 · · · fK

}
and M ⊃

{
m1,m2 · · ·mK

}
refer to the

paired fixed image sets and moving image sets.

A. Affine transformation network – ATNet

STN [44] is a dynamic mechanism that can transform
images or feature maps in a voxel-based manner. With this
mechanism, a specific transformation can be performed all
over the entire feature map, including scaling, cropping, rotat-
ing, etc. Owing to its high effectiveness, STN has been widely
applied to deep learning-based registration tasks.

We use STN to perform affine transformation on the moving
images [52], which geometrically consists of a non-singular
linear transformation (transformation using a linear function).

To clearly demonstrate the procedure, let p (xi, yi) represent a
pixel sampling from m, where xi, yi denotes as the coordinates
of the corresponding pixel. Then the affine transformation can
be expressed as:

Aθ(p) =

[
θ11 θ12 θ13
θ21 θ22 θ23

]
·

 xi
yi
1

 (1)

where θ represents the parameters that determine the linear
transformation. We pre-train a shallow regression network to
predict those parameters. With the obtained parameters, STN
can perform the affine transformation automatically without
human involvement to roughly align the moving images M to
corresponding fixed images F . This regress network is called
the affine transformation network (ATNet) in our framework.
With ATNet, we can acquire the affine transformed predictions
of the original moving images, which are represented as MA ⊃{
m1
A,m

2
A · · ·mk

A

}
. These predictions are roughly aligned

to F , and dense deformation transformations are needed to
align the detailed local structures. It can be seen that only
performing a linear transformation will not be able to capture
the subtle differences between multi-contrast images. Besides,
since affine transformations are global information-driven, the
performance may be compromised when registered in low
signals area. Therefore, predictions of the affine transformation
network are treated as coarse registration images, which need
to be further improved.

B. Deformable transformation network – DTNet

Deformable transformations are important for fine image
registration. VoxelMorph [2]–[5] constructs a differentiable
operation, which can be optimized through network training,
on each pixel to realize image registration. Let us define ϕ as
the obtained transformation field. Each value in ϕ represents
an offset distance. Symbol ◦ refers to the transformation oper-
ator for mk, which consists of pixel shifting and interpolation.
For each pixel p in mk transform to p′ can be defined as:

p′ = p+ ϕ(p) (2)

VoxelMorph performs an additional linear interpolation in
neighboring pixels after the pixel transformation to avoid
discontinuities in transformed images:

m ◦ ϕ(p) =
∑

q∈Z(p)

m(q)
∏

dim∈x,y,z

(1− |pdim − qdim|) (3)

where Z represents the regions composed of adjacent pixels.
Through this differentiable interpolation operation, the pre-
dicted results are smoother and more realistic.

We employ VoxelMorph as our deformable transformation
network (DTNet) to conduct fine image registrations. Some
changes in the network architecture were adopted. For exam-
ple, we adopted a deeper convolution structure to fully extract
features. In addition, the activate function of ReLu is replaced
by Leaky ReLu. More details about the architecture will be
arranged in section IV.
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C. Coarse-to-fine multi-contrast image registration
framework

To reduce the challenges of unsupervised multi-contrasts
image transformation, we propose a coarse-to-fine image reg-
istration framework. Specifically, we embed the pre-trained
ATNet Dθ(F,M), with frozen parameters into DTNet. The
affine transformed predictions MA can serve as the inputs to
DTNet. In this way, DTNet receives images that were roughly
aligned to the fixed images with decreased image discrepan-
cies. Different from existing methods that conduct two-step
registrations of using affine transformations as preprocessing
and then refine the predictions, the proposed framework adopts
an end-to-end approach that conducts those operations in one
architecture. Compared with the existing registration method,
our method does not need to iterate over affine or deformation
transformations. Meanwhile, we can obtain the affine trans-
formed predictions and deformable transformed predictions as
side outputs of the framework.

D. Dual consistency-constrained bi-directional image
transformation

Intuitively, the registration procedure should be symmetri-
cal, which refers to the bi-directional transformations between
the moving images and the fixed images. This assumption was
first proposed in [35] with an Euler Lagrange equation for
iterative optimization and achieved great success in medical
image registration. Inspired by this work, we propose a bi-
directional image transformation method.

As defined in the previous section, ϕ is the transformation
field for the forward transformation of registering moving
images to fixed images. However, to inverse the transfor-
mation and restore the moving images, simply apply −ϕ
to the predictions of the forward deformation will not work
because the correspondence between ϕ and the image pixels
has been destroyed by the forward shift. Let ϕi,j be the
displacement of the pixel (i, j) in the moving image. After
the forward transformation, pixel (i, j) becomes pixel (i

′
, j

′
)

in the registered image. Then, −ϕi,j should be the inverse
displacement of the pixel (i

′
, j

′
) instead of (i, j), and we

need to find the correspondence between −ϕi,j and (i, j).
Accordingly, we constructed the inverse deformation field ϕ−1

to guide the backward transformation. Instead of building a
new network to generate ϕ−1 from scratch [53] or integrate
the negative velocity field [5], we extrapolate ϕ−1 from ϕ
to reduce complicated operations. Specifically, as ϕ consists
of the horizontal and vertical offsets in the 2D space, we
first decompose ϕ to obtain the two offset fields ϕx and ϕy ,
respectively. Then, we warp the offset fields with the original
ϕ to form the deformed offset fields. By recombining the
deformed offset fields, a new transformation field is generated.
Finally, the inverse transformation field ϕ−1 is obtained by
multiplying with -1. In this way, we successfully align the
transformation field with the pixels in the registered images. To
sum up, the whole process can be represented by the following
equation:

ϕ−1 = −Σx,y (ϕi ◦ ϕ) (4)

Since there are no reference images to evaluate the accuracy
of the multi-contrast registration predictions, it is difficult to
conduct the bi-directional registrations simultaneously from
M to F and from F to M . To combat this issue, we come
up with a compromised solution that transfers the multi-
contrast bi-directional image registration task to a unimodal
image registration task, i.e. we use the predictions MD ⊃{
m1
d,m

2
d · · ·mk

d

}
instead of the fixed images F to calculate

the inverse transformed images: M−1D = MD ◦ϕ−1. Here, we
assume that M−1D should still maintain the same distribution
as MA. Base on this, we use a consistency loss to accurate
constraint M−1D to MA, which can be MSE or NCC. We can
then obtain our integrated framework, the coarse-to-fine multi-
contrast image registration framework with dual consistency
constraint.

E. Coarse-to-fine multi-contrast image registration
framework with dual consistency constraint

Fig. 2. The proposed coarse-to-fine multi-contrast image registration
framework with dual consistency constraint. Aθ represents the pre-
trained ATNet. Dθ refers to the DTNet. MD and M−1

D construct the
bi-directional registration cycle.

Our coarse-to-fine multi-contrast image registration frame-
work with dual consistency constraint is illustrated in Fig. 2.
The framework consists of three main parts: 1) The pre-trained
affine transformation network ATNet (Aθ) for coarse affine
registration. The input to ATNet is a pair of M and F MR
multi-contrast images. The output is the affine transformation
for coarse alignment from M to F . The coarsely aligned
images MA are the inputs to the subsequent deformable
transformation network. It is important to note that once the
pre-training is finished, the parameters of ATNet are frozen
and no longer updated. 2) The deformable transformation
network DTNet is to generate the final predictions. The input
to DTNet is a concatenation of F and MA. The output is
a densely transformation field ϕ. With ϕ, the final prediction
MD is generated. 3) A dual consistency constraint. We propose
a novel inverse transformation from MD to M−1D to further en-
hance the registration performance. We calculated the inverse
transformation field ϕ−1 and warp MD with it to obtain M−1D .
By enforcing a similarity measure between M−1D and MA, we
achieve the dual consistency constraint. With the bi-directional
registration strategy, undesirable interpolation during image
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registration is expected to be suppressed and a more accurate
registration can be obtained.

F. Loss function
As indicated in Fig. 2, multiple loss functions are utilized to

optimize the multi-contrast MR image registration framework.
For simplicity, we use ξθ(·) to represent an undefined network
which can be either ATNet (Aθ) or DTNet (Dθ).

The most important loss function used is Mutual Infor-
mation (MI), which can measure the distribution dependence
between two random variables [45]. Here, we define two
marginal probability distributions, pF (f) and pM (m), and a
joint probability distribution pF,M (f,m). MI measures the
degree of dependence between F and M by calculating the
distance between the joint distribution pF,M (f,m) and the
distribution pF (f)pM (m) by means of the Kullback-Leibler
measurement [54]. MI loss (MI) can be written as Eq. 5:

MI(F,M) = −
∫∫

pF,M (f,m) log(
pF,M (f,m)

pF (f)pM (m)
)dxdy

(5)
If F and M are independent, pF,M (f,m) is equal to

pF (f)pM (m), and MI(F,M) will be zero, which means that
there is no mutual information between the two variables.
Maximization of MI is a general and powerful criterion
because no assumptions are made regarding the nature of this
dependence and no limiting constraints are imposed on the
image content of different modalities involved [47].

Since MR images are usually in grayscale with background
values close to 0, we suggest no signals should appear in the
background regions of registered images. Based on this, we
propose a prior knowledge-based background suppressing loss
function: MSE(f,m) = (f − m)2 when f are background
pixels.

Combing the MI loss function and the prior knowledge-
based background suppressing loss function, we obtain the
first loss function, which is called a prior knowledge-based
joint loss function (JL (F, ξθ(F,M), λ)) as shown in Eq.6:

JL(F, ξθ(F,M), α, β) =∑
f,m

(αMI(f, ξθ(f,m))+

β
∑
i

{
MSE(fi, ξθ(f,m)i), if fi < γ

0, otherwise
(6)

where i ∈ N represents the pixels in images, γ is a threshold
obtained from the data set to determine whether the pixel
is background or not, α and β are adjust factors to balance
the two losses. JL can not only constrain the global image
alignment by maximizing MI, but also penalize the incorrect
predictions in defined regions. This makes the predictions
more in line with the nature of medical images.

The second loss function we use is to meet the dual con-
sistency constraint. A simple MSE loss is calculated instead
of MI loss between M−1D and MA. The utilization of MSE
loss is not fixed and can be replaced by similar losses, such
as NCC or L1-norm.

The last loss function is calculated to constrain the trans-
formation field ϕ. Transformation may occur with an irregular
displacement without constraint, whereas the above mentioned
two losses can still be small through the interpolation al-
gorithm. To prevent such situations, a spatially smooth loss
function is designed to refine the transformation field ϕ:

SL(ϕ) =
∑
f,m

|∇ϕ(f,m)|2 (7)

where ∇(·) represent the calculation of gradients. By limiting
the gradient of the deformation field, we make sure that the
transformation field is smooth, and extreme pixel displacement
can be avoided.

The overall loss function to optimize the framework is
calculated as shown in

Losstotal(F,M) =λ1SL(ϕ) + JL(F,Dθ(F,M), λ2, λ3)+

λ4MSE(Aθ(F,M),D−1θ (F,M))
(8)

The equation contains four adjust factors λi∈{1,2,3,4}. These
are hyper-parameters that can be set to different values ac-
cording to the experiment.

IV. EXPERIMENTS AND RESULTS

In this section, we verify the effectiveness of the pro-
posed methods through extensive experiments. In clinical
practices, FLAIR and DWI are the most commonly used MR
weighted sequences. Thus, our image registration experiments
are mainly conducted with FLAIR and DWI data.

A. Dataset
The multi-contrast MR data were collected by Guizhou

Provincial People’s Hospital. This retrospective study was
approved by the institutional review board of the hospital with
the written informed consent requirement waived. All patient
records were de-identified before analysis and reviewed by
the institutional review boards to guarantee no potential risk
to patients. The researchers who conduct the registration tasks
have no link to the patients to prevent any possible breach of
confidentiality.

In total, data from 555 patients are utilized with or without
stroke lesions. Each patient was scanned with five sequences:
T1 weighted, T2 weighted, FLAIR, ADC, and DWI. All
images were obtained with a Siemens 1.5T scanner. Of the
555 cases, 466 are provided with the scanning information
while the others are not. Two sets of experiments were
conducted, one with the physical space alignment according
to the provided scanning information and the other without. In
the first set of experiments, only the 466 cases with scanning
information were utilized. 426 cases were randomly selected
as the training set and the remaining 40 cases as the test
set. Stroke lesions in DWI and FLAIR images of the test set
were annotated by experienced clinicians for quantitative result
evaluation. In the second set of experiments, all 555 cases were
used. Since no physical space pre-alignment was performed,
the 89 cases without scanning information were included in
the training set. All the data are resized to 224 × 224 with
intensity normalized [0, 1].
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B. Implementation details

Theoretically, ATNet and DTNet can adopt various network
structures. In this study, we prefer simple network structures to
reduce computational complexity. We will show in the results
section that even with the selected simple network structures,
our proposed method can still achieve good registration per-
formance.

ATNet is implemented with a regression network, which
contains five downsampling blocks and two fully-connected
layers. Each downsampling block consists of two 3 × 3
convolutional layers followed by a 2 × 2 max pooling layer.
The convolution operation is always followed by batch normal-
ization and leaky ReLU activation unless otherwise specified.
Finally, two fully-connected layers is appended to generate
the 6 transformation parameters. With these parameters, affine
transformations are performed. The channels of the downsam-
pling blocks and the last two fully-connected layers are set as
16, 32, 32, 64, 64, 128, 32, and 6, respectively. ATNet has
about 589k trainable parameters.

DTNet is modified from the famous UNet with an encoder-
decoder architecture [55]. The encoder of DTNet is the same
as the above mentioned ATNet, whereas the decoder is de-
signed symmetrically to the encoder. For the last layer, we
utilized two 3 × 3 convolutions with linear activations and
then, the final transformation field ϕ can be obtained. DTNet
has about 1478k trainable parameters.

Multiple comparison methods are adopted, including Voxel-
Morph (VM) [4], VoxelMorph-diff (VM-diff) [5], LT-Net [53],
and Symmetric Normalization (SyN) [35]. VM is the most
famous deep learning-based registration algorithms developed
in recent years. We slightly adjust the method (using the MI
loss) to make it suitable for multi-contrast image registration.
For LT-Net, we discarded the label transfer part and only
kept the main registration framework with the inverse module.
SyN is a top-performing brain registration algorithm. It is im-
plemented in the publicly available Advanced Normalization
Tools (ANTs) software package [56] with a MI constraint
for multi-contrast MR image registration. In our implemen-
tation, SyN has two designs: 1) Moving images go through
ANTs-based affine transformations and SyN, represented as
‘SyN(Affine)’; 2) Moving images go through SyN only, rep-
resented as ‘SyN(Only)’. Since the GPU implementations for
these two methods are not currently available, CPU imple-
mentations are utilized and the registration speed is reported
accordingly.

Our method is implemented using Keras with a Tensor-
flow backend on a NVIDIA Titan Xp GPU. All experiments
are based on 2D slices. During training, data augmentation
methods are applied including random translations, rotations,
dilations, and horizontal flip. The batch size is set to 32,
and the learning rate is set to 0.01 with an Adam optimizer.
Pre-training ATNet takes about 25 minutes, and the entire
framework including DTNet requires another 20 minutes to
optimize. The four weights in the loss function, λi∈{1,2,3,4},
were set to 1, 4, 100, 100 empirically. The threshold fac-
tors γ in the JL was set to 0.1. Our code will be avail-
able online at https://github.com/SZUHvern/TMI_

multi-contrast-registration.

C. Results of multi-contrast MR image registration

In this section, qualitative and quantitative image registra-
tion results are reported. Quantitative results are calculated
with regard to the alignment of stroke lesions between regis-
tered moving images and fixed images. Please note that there
is still a lack of measurement metrics to characterize multi-
contrast MR image registration. Although the area or shape
of the stroke lesions may be differently presented in multi-
contrast images, we believe that alignment between the stroke
lesions can still reflect the registration performance.

We evaluated our method using Dice, Recall, and Precision,
which are commonly used in computer vision. They are im-
portant indicators to assess the overall difference between our
predictions and the ground truths. The exact formulas to calcu-
late the three scores are: Dice = 2TP/(2TP + FP + FN),
Recall = TP/(TP + FN), and Precision = TP/(TP +
FP ). Here, TP (true positive) indicates the numbers of cor-
rectly register pixels, FP (false positive) indicates the numbers
of pixels that the model register negative as positive, and FN
(false negative) indicates the numbers of pixels that the model
register positive as negative. We calculate these scores based
for each case individually and report the average results. In
addition, in order to quantify the deformation regularity, we
calculate the Jacobian determinant Jϕ as the derivative of the
deformation field, and |Jϕ| < 0 indicates the locations where
folding has occurred. We report the number of pixels where
|Jϕ| < 0.

Example predictions of different methods are shown in
Fig. 3. For example (a), the comparison methods generated
deformed skulls while our method can keep the structure very
well. In regions with low signals, such as example (b), iterative
methods, SyN (Affine) and SyN (Only), show unexpected de-
formations and the tissues look abnormal. In example (c), the
deep learning-based comparison methods cannot fully register
the stroke lesions. Our method can still perform well thanks to
the more robust registration flow we designed. Finally, when
scanning artifacts exist in remote regions (example (d)), SyN
(Only) shows obvious image distortion in order to fit the
artifacts. Overall, satisfactory results are achieved by all the
registration methods, and our method performs especially well
for challenging cases with artifacts, sharp changes, etc.

The quantitative results are listed in Table I. Without
registration, stroke lesion annotations in FLAIR and DWI
images are misaligned with an average Dice score of 0.7822,
which reflects the need for multi-contrast image registration.
ATNet gets 0.8067, reflecting that even with the physical space
alignment, linear transformations is still needed to achieve
accurate registration. The methods without the affine trans-
formation, SyN (Only) generate a similar result of 0.8101. It
is improved to 0.8157 by introducing the affine transformation
(SyN (Affine)). Our method achieves the highest score of
0.8397, proving its effectiveness in handling the multi-contrast
image registration problem.

Efficiencies of the different methods are also compared.
For fair comparisons, all the methods are tested on a CPU.
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Fig. 3. Qualitative registration results of different methods. The green circle denotes regions that our method registered better than other methods
while the red circle denotes unexpected predictions based on the specific comparison methods.

TABLE I
QUANTITATIVE MEASUREMENT OF THE STROKE REGION REGISTRATION RESULTS AND THE REQUIRED TEST TIME.

Method Dice Precision Recall Sec/Slice
(GPU)

Sec/Slice
(CPU)

Undef 0.7822± 0.0974 0.8491± 0.1007 0.7326± 0.1175 - -
SyN(Only) 0.8101± 0.0979 0.8734± 0.1137 0.7669± 0.1237 - 1.4446

SyN(Affine) 0.8157± 0.0950 0.8769± 0.1061 0.7736± 0.1244 - 2.0335
LT-Net 0.7960± 0.1043 0.8480± 0.1087 0.7595± 0.1220 0.0162 0.2156

VM-diff 0.8011± 0.0991 0.8305± 0.1059 0.7826± 0.1184 0.0405 0.1801
VM 0.8053± 0.0954 0.8861± 0.0856 0.7534± 0.1322 0.0109 0.1699

ATNet 0.8067± 0.0935 0.8699± 0.0948 0.7590± 0.1128 0.0100 0.0299
Ours 0.8397± 0.0756 0.8856± 0.0808 0.8081± 0.1069 0.0223 0.2037

SyN (Affine) is the least efficient method that spends 2.0335
seconds to register one image slice, and ATNet has the highest
efficiency which needs only 0.02 seconds. Comparing with the
most competitive method, SyN (Affine), our method is about
10 times faster with better registration results. It can achieve
the registration of one 3D image case (20 slices) within 5
seconds, which is sufficient for real-time diagnosis in clinical
practices. The time spent can be further shortened to within
0.5 second/case when testing on a GPU.

D. Visualization of the transformation field
Visualizations of example transformation fields ϕ are shown

in Fig. 4. These examples indicate that even after the physical
alignment and affine transformation, large deformations (indi-
cated by the red and green signals in the transformation fields)
are still needed for accurate registrations. As a result, physical
alignment, affine transformation, and deformable transforma-
tion, especially the latter two, are simultaneously required in
applications.

E. Time consumption analysis of inverse transformation

To investigate the efficiency of the proposed inverse trans-
formation, we compare the time consumption of our proposed
method with the existing inverse methods, VM-diff [5] and
LT-Net [53].

VM-diff [5] introduced an inverse deformation by adding
a differential and integral layer (to generate velocity field)
combined with a spatial transformation layer. The inverse
deformation field is then obtained by iterating the negative
velocity field. Specifically, this method split the registration
into T=7 integration steps and then warp moving images
according to the computed diffeomorphic field ϕ−1 using
a spatial transform layer. Comparing with our method of
calculating the inverse deformation field in one step, this
method requires more operation steps.

LT-Net [53] is a cycle-correspondence learning method for
atlas-based segmentation. This method builds a new network
to learn the inverse deformable field and achieves the inverse
transformation through a transformation layer. Since the in-
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Fig. 4. Visualizations of the transformation fields ϕ. Red color indicates
the transformation in the horizontal direction and green indicates the
transformation in the vertical direction. Higher red or green color signals
indicate larger transformations.

verse deformation field is realized by a new network, this
method is more complicated than ours.

We conduct experiments to quantitatively compare the time
consumption of different methods to prove our analysis (Table
II). For fair comparisons, we implemented all methods with
the same neural networks (DTNet) except for the inverse op-
eration, and thus, the obtained time consumptions are different
from those shown in Table I. As expected, our method is the
fastest with a registration speed of 0.0233 s/slice on a GPU.

TABLE II
QUANTITATIVE TIME COMPARISON BETWEEN DIFFERENT INVERSE

METHODS.

Method Sec/Slice(GPU) Sec/Slice(CPU)
VM-diff 0.0565 0.2147
LT-Net 0.0320 0.2479
Ours 0.0223 0.2037

F. Ablation experiment
We also conducted extensive ablation experiments to verify

the effectiveness of the proposed framework. Firstly, we in-
vestigate the influence of network widths on the registration
performance under two learning rates. Then, we inspect the
importance of the all the proposed structures. Finally, we
discussed the influence of JL’s parameter selection on the
prediction result.

In Fig. 5, we show the Dice scores of networks with
different widths under two learning rates. Although the larger
learning rate can lead to relatively faster convergence, fluctu-
ated Dice score curves indicate that the training is unstable.
Especially for width of 32 network, a smaller learning rate
might be more appropriate. For the different network widths,
significantly worse performance is observed with a width of
8 and 16, which might indicate that the network is not able

to capture the complex image properties. Wider networks
with widths of 32 and 64 show similar performance and the
network with a width of 32 performs slightly better. It is worth
noting that there is no overfitting in all implementations, which
indirectly proves the suitability of our method for the multi-
contrast image registration task.

Fig. 5. Results of networks with different widths (8, 16, 32, 64) under
two learning rates of 0.1 and 0.01. The width value represents the
number of feature maps in the first block of DTNet.

To inspect the importance of the proposed structures, we
conducted experiments progressively under different settings.
The results are listed in Table III. DTNet performed well
when compared with the linear transformation ATNet, showing
the advantages of deformable transformation. Besides, when
these two types of methods are used in combination, the
performance is further improved, achieving a Dice score of
0.8258. These experiments prove that the proposed coarse-
to-fine framework is effective. Utilizing this framework, we
add the proposed JL constraint, and the Dice score is in-
creased by another 0.8% thanks to the effective suppression
of the wrongly predicted background pixels. Our final model
is constructed by introducing the proposed dual consistency
constraint, achieving the best Dice score of 0.8397.

We derived the Jacobian determinant to calculate the num-
ber of folding pixels (the lower the better) to check the model
effectiveness. The coarse-to-fine framework, ATNet + DTNet,
gets a number of 30 ± 30, which is significantly lower than
that of DTNet (46 ± 50). However, this number is slightly
increased when adding the JL constraint. We suspect that JL is
designed for background error suppression, which might lead
to the folding of unexpected background pixels. Nevertheless,
with the introduction of the dual consistency constraint, the
number is largely reduced to 13±15. This proves that the dual
consistency constraint can effectively suppress the occurrence
of pixels folding through the inverse transformation.

As stated in the previous sections, the four weights in the
JL function (Eq. 8), λi∈{1,2,3,4}, were empirically set to 1, 4,
100, 100. Here, we conducted experiments by fixing λ1 and
λ4 to investigate the influence of λ2 and λ3, which are also the
α and β in Eq. 6 that control the relative contributions of MI
loss and the prior knowledge-based background suppressing
loss. In details, we checked different α values from 0 to
10 with a step size of 1, and different β values from 0 to
200 with a step size of 20. The results are shown in Fig.
6. Two conclusions can be made. Firstly, with the increase
of α, the registration performance gradually improves until
the Dice scores fluctuate around 0.83. This indicates that MI
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TABLE III
QUANTITATIVE RESULTS COMPARISON BETWEEN DIFFERENT METHODS.

Method Dice Precision Recall |Jϕ| < 0
Undef 0.7822± 0.0974 0.8491± 0.1007 0.7326± 0.1175 −
ATNet 0.8067± 0.0935 0.8699± 0.0948 0.7590± 0.1128 −
DTNet 0.8117± 0.0919 0.8727± 0.0979 0.7690± 0.1173 46± 50

ATNet+DTNet 0.8258± 0.0787 0.8847± 0.0826 0.7905± 0.1112 30± 30
ATNet+DTNet(JL) 0.8339± 0.0840 0.8889± 0.0801 0.7955± 0.1165 60± 50

Ours 0.8397± 0.0756 0.8856± 0.0808 0.8081± 0.1069 13± 15

α
β

Dice

0
25

50
75

100

0.78

125
150

175
200

0.80

0.82

0.84

0.86

Fig. 6. Influence of the weights (α and β) in the proposed JL on the
registration performance.

is important for accurate image registration. Secondly, with
the increase of β, the registration performance also improves
slightly. This confirms that the proposed prior knowledge-
based background suppressing loss can help MI loss better
optimize the network. The best Dice score of 0.8397 is
achieved when α = 4 and β = 100, which is much better than
the Dice score of 0.8289 when α = 4 and β = 0. Overall, the
registration performance is quite robust with changing α and
β values, and the proposed JL is effective. These results in all
confirm that the proposed coarse-to-fine architecture, JL, and
the dual consistency constraint can successfully enhance the
multi-contrast MR image registration performance.

G. Experiment on data without scanning information

There are occasions when the scanning information, includ-
ing the pixel spacing and field of views, is lost. Without the
scanning information, multi-contrast images cannot be pre-
aligned in the physical space, which brings great difficul-
ties to the accurate image registration task. To increase the
application capability of the proposed method, we conduct
experiments without the first step physical space alignment.
In this set of experiments, all the collected 555 image data
are utilized. Some examples are shown in Fig. 7. It can be
observed that due to the different imaging parameters, large
discrepancies exist between the different contrast images.

The registration results of different methods are reported in
Table IV. Overall, worse results are obtained in these exper-
iments compared to those achieved with the physical space
alignment (Table I). Before any registration, stroke lesion

Fig. 7. MR multi-contrast brain images without physical alignment
in advance. The images show large discrepancies between images
acquired with different contrasts.

annotations in FLAIR and DWI images are largely misaligned
with an average Dice score of only 0.3472. Compared to the
scores achieved with the first step physical space alignment
(Table I), the performance of SyN (Only) is dramatically
decreased by more than 20% (0.5880 vs. 0.8101). SyN (Affine)
obtains a slightly decreased score of 0.8048. The scores of
all the learning-based comparison methods are decreased by
roughly 4%. Our method still maintains a good performance
with a score of 0.8260, which is only decreased by 1.37%. It
indicates that the proposed method generalizes well to difficult
tasks, and thus, the robustness is improved. Considering the
time complexities, our proposed method becomes better than
the time-consuming iterative-based method of SyN (Affine).
Overall, when facing more challenging tasks, our method can
still maintain good registration performance with satisfactory
registration speed.

Moreover, we also tested to the structural MR images
acquired with the three contrasts (T1 weighted, T2 weighted,
and FLAIR) to DWI images using the proposed method (Fig.
8). Results indicate that our method can also perform quite
well, which shows the general applicability of our method
when handling different multi-contrast MR image registration
tasks. It again validates that robustness of our method, and its
high potential to be applied in clinical practices.

V. CONCLUSION

Multi-contrast MR image registration is critical for many
clinical applications. Existing registration methods are limited
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TABLE IV
QUANTITATIVE MEASUREMENT OF THE STROKE REGION REGISTRATION RESULTS AND THE REQUIRED TEST TIME BASED ON DATA WITHOUT

PRE-ALIGNMENT.

Method Dice Precision Recall Sec/Slice
(GPU)

Sec/Slice
(CPU)

Undef 0.3472± 0.2390 0.3092± 0.2131 0.3999± 0.2789 - -
SyN(Only) 0.5880± 0.2502 0.5539± 0.2628 0.6534± 0.2584 - 3.0238

SyN(Affine) 0.8084± 0.0989 0.8682± 0.1411 0.7565± 0.1510 - 3.7044
LT-Net 0.7599± 0.1371 0.8283± 0.1338 0.7178± 0.1597 0.0152 0.2242

VM-diff 0.7583± 0.1181 0.8166± 0.1326 0.7181± 0.1283 0.0401 0.1776
VM 0.7672± 0.1281 0.7984± 0.1358 0.7480± 0.1403 0.0109 0.1792

ATNet 0.7603± 0.1279 0.8066± 0.1307 0.7267± 0.1438 0.0101 0.0351
Ours 0.8260± 0.0761 0.8666± 0.0921 0.7981± 0.0989 0.0201 0.2176

Fig. 8. Example results from registering MR images without pre-
alignment acquired by the three structural sequences (T1 weighted,
T2 weighted, and FLAIR) to DWI. (a) and (c) are two image slices
selected from one patient without pre-alignment. (b) and (d) are the
corresponding registration results.

by either the registration performance or the registration speed.
In this paper, we propose a novel unsupervised deep learning-
based registration framework. The proposed method embeds
an affine transformation network in a deformable transfor-
mation network, which can not only improves the multi-
contrast MR image registration performance but also reduces
the time requirement for the registration process. In addition, a
dual consistency strategy is proposed to achieve bi-directional
image registrations so that the robustness of the method can
be enhanced. To optimize the framework, we also developed a
joint loss function combining the mutual information loss with
an elaborately designed prior knowledge-based background
suppressing loss. Compared to state-of-the-art registration
methods, our framework achieves the best performance with a
Dice score of 0.8397. Our method is also 10 times faster than
the most competitive method (SyN) when testing on a CPU.
In addition, our method can maintain the performance when
handling different tasks, while comparison methods show large
performance degradations.

Our developed method is not limited to multi-contrast MR
image registrations. It can also be applied to unimodal or other
multi-modal image registration tasks with modifications. Fur-

thermore, accurate and efficient registration algorithms can be
employed in the development of learning-based methods when
human annotations are expensive to obtain and reduced re-
liance on annotations is necessary. For example, the proposed
method can be easily extended to ATLAS-based segmentation
tasks. In the future, we expect to further develop the proposed
method to accommodate multi-modal image registrations such
as those from CT to MR images. Overall, our method presents
encouraging potentials in assisting intelligent medical data
analysis.
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